COURSE: M.Phil., MATHEMATICS Paper I: Algebra and Topology Subcode: MPhlMS1 # Algebra **Unit I:** Modules over a Principal Ideal Domain- Ring of endomorphisms of an Abelian group, Left and Right modules, Free modules and matrices, Direct sum of modules, Structure theorem for finitely generated modules over a P.I.D. Unit II: Lattices and Boolean Algebras Partially ordered sets and lattices, Distributivity and modularity, The theorem of Jordan-Holder, Dedekend, The lattices of subspaces of vector space, Fundamental theorem of projective geometry, Boolean Algebras **Unit III:** Basic structure theory of Rings Primitivity and semi primitivity, the Radical of a ring, Density theorem, Artinian Rings and Structure theory of Algebras. **Treatment as in** 'Basic Algebra' Volume I and Volume II, by Nathan Jacobson. Hindustan Publishing Corporation (India), New Delhi Unit I: Volume I- Chapter 3- Sections 3.1 to 3.6 and 3.8 Unit II: Volume I- Chapter 8- Sections 8.1 to 8.5 Unit III: Volume II- Chapter 4- Sections 4.1 to 4.5 ## **Topology** **Unit IV:** Fundamental Group and Covering Spaces Homotopy, Fundamental Group, Covering spaces **Unit V:** Simplicial Complexes Geometry of Simplicial complexes, Barycentric Subdivisions, Simplicial Approximation theorem **Treatment as in** 'Lecture Notes on Elementary Topology and Geometry by I.M.Singer and J.A.Thorpe, Springer- Verlag, 1967 Unit IV- Chapter 3 # Unit V- Chapter 4 (omit section 4.4) # **Books for reference:** - 1) S.Lang-Algebra, Addison Wesley - 2) Maclane and Birkoff-Algebra, Macmillan - 3) Introduction to Commutative Algebra by M.F.Atiyah, I.G.Macdonald, Addison-Wesley, 1964 - 4) John L.Kelley-General Topology, Springer-Verlag # **COURSE: M.Phil., MATHEMATICS Paper II: Analysis and Geometry** Sub code:MPhlMS2 # **Analysis** Unit I: Abstract Integration Sigma Algebra, measure, Elementary properties of measures, Integration of positive functions, Integration of Complex functions, Monotone Convergence theorem, Fatou's lemma, Dominated Convergence theorem. **Unit II:** Positive Borel Measures and Lebesgue Spaces Urysohn's lemma, Parititon of unity, Riesz Representation theorem, Regularity of Borel Measures, Lebesgue measure on Rⁿ, Continuity property of Borel measurable functions (Luzin's theorem, Vitali Caretheodory theorem), Concept of convexity and Jensen's inequality, the Lp spaces, Approximation by continuous functions. **Treatment as in** Walter Rudin, 'Real and Complex Analysis', Third Edition, McGrawHill Book Company, 1987. Unit I:- Chapter 1- Sections 1.1 to 1.34 Unit II:- Chapter 2- Sections 2.1 to 2.24 Chapter 3- Sections 3.1 to 3.17 # **Geometry** **Unit III:** Differential forms in Rⁿ, Line Integrals Unit IV: Differentiable Manifolds **Unit V:** Integration on Manifolds- Integration of differential forms, Stope's theorem, Poincare's Lemma **Treatment as in** 'Differential Geometry and Applications' by M.P.do Carmo, Springer- Verlag 1994 Unit III- Chapters 1 and 2 Unit IV- Chapter 3 Unit V- Chapter 4 # **Books for Reference:** - 1) E.Hewitt, K.R.Stromberg, Real and Abstract Analysis, Springer-Verlag, 1975 - 2) G.B.Folland, Real Analysis, John Wiley and Sons, 1984 - 3) Differential Geometry of Manifolds by Stephen Lovett, A.K.Peters, Ltd, Natick Massachusetts, 2010 4)Differential Manifolds by F.Brickell and R.S.Clark # COURSE: M.Phil., MATHEMATICS PAPER 3: ADVANCED COMPLEX ANALYSIS SUBJECT CODE: MPhIMSAC #### Unit I: **Elementary Properties of Holomorphic Functions -** power series representation, Integration over paths and index of a complex number, Cauchy's theorem for a triangle. #### **Unit II:** **Elementary Properties of Holomorphic Functions -** Homotopic closed paths, zeros of holomorphic functions, evaluation of an integral. ### **Unit III:** **The Maximum Modulus Principle** - Variants of the Schwartz lemma, Maximum Modulus theorem and its converse. # **Unit IV:** **Conformal Mapping** - Holomorphic Extension, Area theorem, Conformal Mapping of an annulus. #### Unit V: **Analytic Continuation** - Function element and its analytic continuation, The Monodromy theorem and the Fundamental theorem of a group Γ . ## Treatment as in Walter Rudin, Real and Complex Analysis, Third Edition, McGraw Hill Book Company, 1987. **Unit I:** Chapter 10-Sections 10.6, 10.7, 10.10, 10.13. **Unit II:** Chapter 10-Sections 10.40,10.43,10.44. Unit III: Chapter 12-Sections 12.4, 12.8, 12.9, 12.13. Unit IV: Chapter 14-Sections 14.2, 14.13, 14.14, 14.22. **Unit V:** Chapter 16-Sections 16.11, 16.14, 16.15. 16.19.