<u>M.Sc Programme outcome</u> On completion of the programme the students should have gained knowledge in different subject areas which includes abstract subjects, application oriented subjects and applicable subjects. The outcome of the programme is to enhance employability and research

S.No	Subject code	Subject Name	Course specific outcome
1	1MS01a	Abstract algebra I	Enhance the abstract thinking that pervades modern analysis
2	1MS02	Real analysis I	It provides an extension of Riemann integral to Reimann stieltjes integral
3	1MS03	Complex Analysis I	Students will be equipped with understanding of contour integration, using residue calculus, harmonic functions, bilinear transformations and conformal mapping.
4	1MS04	Classical Mechanics	Students will have a strong background in abstract and intellectually satisfying areas of dynamical theory
5	1MS05a	Advanced Differential Equations	This course introduces students to the modern theory and methods of ordinary and partial differential equations. A large number of real life problems can be modelled using differential equations, making the subject one of the most widely applicable areas of Mathematics.
6	2MS06a	Abstract Algebra II	It provides a transition from elementary calculus to advanced courses in real and complex functions
7	2MS07a	Real Analysis II	It deals with integrals in space and measurable functions.
8	2MS08a	Complex Analysis II	Gives extensive knowledge about Riemann zeta function, Harmonic function and Elliptic function

0	214500	Orenetiens	OD to sharing on he
9	2MS09a	Operations	OR techniques can be
		Research I	applied in industrial
			Government and Business
			problems to provide
			better quantitative
			information for making
10	2) (010		decisions.
10	2MS10a	Topology	Introduces basic set
			theoretic definition and
			fundamental concepts in
			point-set topology and
			lays foundation for other
			branches of topology like
			differential topology,
			geometric topology and
		5100 11	algebraic topology.
11	3MS11b	Differential	Differential Geometry
		Geometry	uses calculus to study the
			properties of geometric
			configuration by
			focussing on theory of
10	01/01/0	D 1 1 11	curves and surfaces
12	3MS12a	Probability	Gives optimum
		and	knowledge about
		Distributions	hypergeometric, polya
10	01/01/0		and Beta distributions
13	3MS13a	Advanced	To apply rules of
		Discrete	inference, test for validity
		Mathematics	and methods of proof
			including direct and
			indirect forms, proof by
			contradiction,
			mathematical induction
			and write proof using
			symbolic logic and
14	2100011-		Boolean algebra. Provide and
14	3MSE1b	Fuzzy sets &	
		Applications	understanding of the basic Mathematical elements of
			the theory of the fuzzy sets. Provide and
			emphasis on the differences and similarity
			differences and similarity
			between fuzzy sets and classical set theories.
15	3MSE2b	Operations	
15	51015120	Research II	It aims at introducing the students to some
		NESEALUI II	operational research
			methods that are used in
			the systems approach to

			D · · · · ·
			Engineering and
			Management, so as to
			provide them with the
			tools for the
			Mathematical
			representation of decision
			making problems.
16	4MS14	Functional	Able to understand
		Analysis	operators on banach
		-	spaces and Hilbert spaces
17	4MS16a	Advanced	To understand the
		Graph	language of graphs and
		Theory	trees and to use graphs
		•	and solve postman
			problem, travelling sales
			man problem and many
			real life problem.
18	4MSE3b	Number	To give an introduction to
		theory &	elementary number theory
		Cryptography	for application in
			cryptography which is
			used for protecting
			information transmitted
			through public
			communication networks.
19	4MSE4	Stochastic	Knowledge to analyse
		Processes	problems in Renewal
			processes and stationary
			processes.
			*